Accepted papers
Spotlight papers
Spotlight presentations - Part 1 (10:30-10:50am ET)
Deep sharpening of topological features for de novo protein design
Authors: Zander Harteveld, Joshua Southern, Michaël Defferrard, Andreas Loukas, Pierre Vandergheynst, Micheal Bronstein, Bruno Correia
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
Authors: Hannes Stärk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, Tommi S. Jaakkola
Predicting single-cell perturbation responses for unseen drugs
Authors: Leon Hetzel, Simon Böhm, Niki Kilbertus, Stephan Günnemann, Mohammad Lotfollahi, Fabian J Theis
GRPE: Relative Positional Encoding for Graph Transformer
Authors: Wonpyo Park, Woong-Gi Chang, Donggeon Lee, Juntae Kim, seung-won hwang
Spotlight presentations - Part 2 (3:40-4:00pm ET)
SystemMatch: optimizing preclinical drug models to human clinical outcomes via generative latent-space matching
Authors: Scott Gigante, Varsha Raghavan, Amanda M. Robinson, Rob Barton, Adeeb H. Rahman, Drausin F. Wulsin, Jacques Banchereau, Noam Solomon, Luis F. Voloch, Fabian J Theis
Physics-informed deep neural network for rigid-body protein docking
Authors: Freyr Sverrisson, Jean Feydy, Joshua Southern, Michael M. Bronstein, Bruno Correia
Multi-Segment Preserving Sampling for Deep Manifold Sampler
Authors: Dan Berenberg, Jae Hyeon Lee, Simon Kelow, Ji Won Park, Andrew Watkins, Richard Bonneau, Vladimir Gligorijevic, Stephen Ra, Kyunghyun Cho
Regression Transformer: Concurrent Conditional Generation and Regression by Blending Numerical and Textual Tokens
Authors: Jannis Born, Matteo Manica
Accepted posters
Poster session 1 (12-12:45pm ET)
SystemMatch: optimizing preclinical drug models to human clinical outcomes via generative latent-space matching
Authors: Scott Gigante, Varsha Raghavan, Amanda M. Robinson, Rob Barton, Adeeb H. Rahman, Drausin F. Wulsin, Jacques Banchereau, Noam Solomon, Luis F. Voloch, Fabian J Theis
Contrastive learning of image- and structure-based representations in drug discovery
Authors: Ana Sanchez-Fernandez, Elisabeth Rumetshofer, Sepp Hochreiter, Günter Klambauer
Physics-informed deep neural network for rigid-body protein docking
Authors: Freyr Sverrisson, Jean Feydy, Joshua Southern, Michael M. Bronstein, Bruno Correia
Graph Anisotropic Diffusion for Molecules
Authors: Ahmed A. A. Elhag, Gabriele Corso, Hannes Stärk, Micha el M. Bronstein
Predicting single-cell perturbation responses for unseen drugs
Authors: Leon Hetzel, Simon Böhm, Niki Kilbertus, Stephan Günnemann, Mohammad Lotfollahi, Fabian J Theis
An evaluation framework for the objective functions of de novo drug design benchmarks
Authors: Austin Tripp, Wenlin Chen, José Miguel Hernández-Lobato
DebiasedDTA: Model Debiasing to Boost Drug-Target Affinity Prediction
Authors: Rıza Özçelik, Alperen Bağ, Berk Atıl, Arzucan Özgür, Elif Ozkirimli
Glolloc: Mixture of Global and Local Experts for Molecular Activity Prediction
Authors: Héléna A. Gaspar, Matthew P. Seddon
The Rosenbluth sampling Calculation of Hydrophobic-Polar Model
Authors: Marcin Józef Wierzbinski, Alessandro Crimi
Prediction of molecular field points using se(3)-transformer model
Authors: Florian Hinz, Amr H Mahmoud, Markus Alexander Lill
Decoding Surface Fingerprints for Protein-Ligand Interactions
Authors: Ilia Igashov, Arian Rokkum Jamasb, Ahmed Sadek, Freyr Sverrisson, Arne Schneuing, Tom Blundell, Pietro Lio, Michael M. Bronstein, Bruno Correia
High-Content Similarity-Based Virtual Screening Using a Distance Aware Transformer Model
Authors: Manuel Sebastian Sellner, Amr H Mahmoud, Markus Alexander Lill
Evaluating Generalization in GFlowNets for Molecule Design
Authors: Andrei Cristian Nica, Moksh Jain, Emmanuel Bengio, Cheng-Hao Liu, Maksym Korablyov, Michael M. Bronstein, Yoshua Bengio
Deep Learning Model for Flexible and Efficient Protein-Ligand Docking
Authors: Matthew Masters, Amr H Mahmoud, Yao Wei, Markus Alexander Lil
Regression Transformer: Concurrent Conditional Generation and Regression by Blending Numerical and Textual Tokens
Authors: Jannis Born, Matteo Manica
Machine Learning to Hunt for Phage Proteins to Catch Klebsiella
Authors: George Wright, Fayyaz ul Amir Afsar Minhas, Slawomir Michniewski, Eleanor Jameson
Deep sharpening of topological features for de novo protein design
Authors: Zander Harteveld, Joshua Southern, Michaël Defferrard, Andreas Loukas, Pierre Vandergheynst, Micheal Bronstein, Bruno Correia
Improving the assessment of deep learning models in the context of drug-target interaction prediction
Authors: Mirko Torrisi, Antonio De la Vega de Leon, Guillermo Climent, Remco Loos, Alejandro Panjkovich
Poster session 2 (4:40-5:25pm ET)
Isolating salient variations of interest in single-cell transcriptomic data with contrastive VI
Authors: Ethan Weinberger, Chris Lin, Su-In Lee
ChemSpacE: Toward Steerable and Interpretable Chemical Space Exploration
Authors: Yuanqi Du, Xian Liu, Shengchao Liu, Jieyu Zhang, Bolei Zhou
Benchmarking Uncertainty Quantification for Protein Engineering
Authors: Kevin P. Greenman, Ava Soleimany, Kevin K Yang
Convolutions are competitive with transformers for protein sequence pretraining
Authors: Kevin K Yang, Alex Xijie Lu, Nicolo Fusi
MetaDTA: Meta-learning-based drug-target binding affinity prediction
Authors: Eunjoo Lee, Jiho Yoo, Huisun Lee, Seunghoon Hong
Partial Product Aware Machine Learning on DNA-Encoded Libraries
Authors: Polina Binder, Meghan Lawler, LaShadric Grady, Neil Carlson, Svetlana Belyanskaya, Joe Franklin, Nicolas Tilmans, Henri Palacci
De novo design of protein target specific scaffold-based Inhibitors via Reinforcement Learning
Authors: Andrew D. McNaughton, Carter Knutson, Mridula Bontha, Jenna A. Pope, Neeraj Kumar
Torsional Diffusion for Molecular Conformer Generation
Authors: Bowen Jing, Gabriele Corso, Regina Barzilay, Tommi S. Jaakkola
Fragment-based ligand generation guided by geometric deep learning on protein-ligand structures
Authors: Alexander S Powers, Helen H. Yu, Patricia Adriana Suriana, Ron O. Dror
Data-Driven Optimization for Protein Design: Workflows, Algorithms and Metrics
Authors: Sathvik Kolli, Amy X. Lu, Xinyang Geng, Aviral Kumar, Sergey Levine
Variational Interpretable Deep Canonical Correlation Analysis
Authors: Lin Qiu, Vernon M. Chinchilli, Lin Lin
Auto-regressive WaveNet Variational Autoencoders for Alignment-free Generative Protein Design and Fitness Prediction
Authors: Niksa Praljak, Andrew Ferguson
Learning multi-scale functional representations of proteins from single-cell microscopy data
Authors: Anastasia Razdaibiedina, Alexander Brechalov
14. EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
Authors: Hannes Stärk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, Tommi S. Jaakkola
15. GRPE: Relative Positional Encoding for Graph Transformer
Authors: Wonpyo Park, Woong-Gi Chang, Donggeon Lee, Juntae Kim, seung-won hwang
16. Multi-Segment Preserving Sampling for Deep Manifold Sampler
Authors: Dan Berenberg, Jae Hyeon Lee, Simon Kelow, Ji Won Park, Andrew Watkins, Richard Bonneau, Vladimir Gligorijevic, Stephen Ra, Kyunghyun Cho